77.CHEMICAL BONDING (24)- Covalent Bonding(23) – Drago Rule (2).

THE DRAGO RULE. 

Drago rule states that , if –

  1. the central atom has at least one lone pair of electron on it
  2. the central atom belongs to group 13,14 ,15 or 16 and is from 3rd to 7th period.
  3. if electronegativity of central element is 2.5 or less
  4. no. of sigma bonds+ lone pair=4

then , THERE IS NO NEED TO CONSIDER HYBRIDIZATION OF THAT ELEMENT.

771.jpg

 

Consider phosphine . Phosphorous is a group 15 element and is in the third row of the periodic table as seen in the above figure.It has electronegativity value, χ = 2.19 and in phosphine molecule it has a lone pair of electron too. So, according to Drago’s rule, hybridization does not take place. There is only overlapping of atomic orbitals to form bonds.

If we closely look at the structure of Phosphine, we would know the above statement to be true.

772

 

The bond angle in phosphine is 94º . If we apply the formula from post 69 ,

 fs=cosθ/(cosθ-1)
∴fs= (-0.069) /( – 0.069-1)
∴fs= -0.069 / -1.069
∴fs= 0.064

%s character = fs×100 = 0.064 ×100 = 6.4 %

This means that % s character in the P- H bonds is just 6.4% ≈ 6%.

Thus, there is only 6% s- character in P-H bonds. So, s-character in three P-H bonds will be 6 × 3 = 18 % . So, we can conclude that , the lone pair of electrons are in orbitals which have 100 – 18 = 82% s character ! Now, no hybridized orbital ever has this high % of s- character(The maximum %s character is 50%  in sp orbital) .This means that the lone pair of electrons are in pure s- orbital of the atom and NOT IN ANY HYBRIDIZED ORBITAL.

773.jpg

The same logic holds true for all the other elements too.Now that we have established that the lone pair is NOT in any hybrid orbital but in a s- orbital , we can explain all the observations we listed in the earlier post.

As the lone pair is in a s- orbital, it is closer to the nucleus and so very tightly bound to it.Thus, this  lone pair of electron is NOT available for sharing or donating. So, it takes concentrated acid to react with phosphine. Also, as these lone pairs cannot be shared , these compounds do not form coordination compounds. Ammonia on the other hand can lend its lone pair to form coordinate covalent bond and so can form co ordination compounds.

e.g.-774.jpg

 

Ammonia dissolves in water as it forms hydrogen bonds with water molecules. This is possible as the lone pair of electrons are available on nitrogen.

775.jpg

So all the questions which we considerd in the last post can be answered by Drago’s rule. The answer to all those questions is that, as the elements of group 13-16 and 3rd- 7th period donot have a lone pair in hybridized orbital, the lone pair is unavailabe .In elements of 2nd period though, hybridization takes place and so the lone pairs are in hybrid orbitals , which have less %s character and thus, these lone pairs are available for sharing or bonding.

In our next post we shall try to solve some problems related to hybridization theory. Till then,

Be a perpetual student of life and keep learning…

Happy Diwali !

References and Further Reading –
1.https://www.embibe.com/ask/question/what-is-dragons-rule-865

2.https://www.quora.com/What-is-drago-rule

 

Image source –

  1. Periodic table – http://theconversation.com/the-periodic-table-from-its-classic-design-to-use-in-popular-culture-52822

11 comments

  1. Ma’am though no hybridised orbital has a percentage s character as high, what exactly does it mean when you say that the percentage s character of is 82 percent. And also if a single P-H bond has a percentage s character of 6 percent and all three bonds collectively have a percentage s character of 18 percent, why is it that this value was subtracted from 100 to obtain 82 percentage as the answer. I don’t understand, could you please help.

    Like

    1. Hi Bruno.. I have calculated the %s- character for all the three bonds in phosphine using the Draco rule. The value of s- character in each bond comes to 6%. Thus, for 3 P-H bonds the value will be 3*6 = 18 %.

      As you know, the entire s-orbital (100%) of phosphorous atom is used to make phosphine. So if 18% has gone in making the phosphine bonds, the remaining s- orbital (100 – 18 = 82%) must have gone in an orbital containing the lone pairs. So, the 3s2 orbital , which contains the lone pair has 82% s- character.

      However, we know that only three types of hybridization are possible –
      1) sp3 hybrid orbital – 25% s- character
      2)sp2 hybrid orbital- 33% s- character
      3)sp hybrid orbital – 50% s- character.

      The s- character in 3s2 orbital is much more than 50%.
      So , if the s-character is more , we can safely conclude that the orbital cannot be a hybrid one.
      In the case of phosphine, the lone pairs are in an orbital with 82% s- character. Thus, the orbital holding these lone pair of electrons cannot be a hybrid orbital. It HAS TO BE a regular pure s- orbital.

      Hope this helps .. feel free to get back if you have further queries.

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s